000 01164nam a2200289 i 4500
001 801
003 AR-RqUTN
008 240529s1970 |||||r|||| 001 0 eng d
020 _a0898743435
040 _aAR-RqUTN
_bspa
_cAR-RqUTN
041 7 _aen
_2ISO 639-1
080 0 _a515.1
_22000
100 1 _aWilansky, Albert
245 1 0 _aTopology for analysis /
_cAlbert Wilansky
260 _aMalabar, Florida :
_bRobert E. Krieger,
_c1970
300 _axiii, 383 p. :
_c24 cm
336 _2rdacontent
_atexto
_btxt
337 _2rdamedia
_asin mediación
_bn
338 _2rdacarrier
_avolumen
_bnc
500 _aIncluye índice alfabético
504 _aBibliografía: p. 369-373
505 1 0 _a1. Introduction 2. Topological space 3. Convergence 4. Separation axioms 5. Topological concepts 6. Sup, weak, product, and quotient topologies 7. Compactness 8. Compactification 9. Complete semimetric space 10. Metrization 11. Uniformity 12. Topological groups 13. Function spaces 14. Miscellaneous topics Appendix: Tables of theorems and counterexamples
650 7 _aTOPOLOGIA
_2Spines
942 _cBK
_2udc
999 _c801
_d801